Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Eur J Immunol ; 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2286820

ABSTRACT

Dysregulation of the myeloid cell compartment is a feature of severe disease in hospitalized COVID-19 patients. Here, we investigated the response of circulating dendritic cell (DC) and monocyte subpopulations in SARS-CoV-2 infected outpatients with mild disease and compared it to the response of healthy individuals to yellow fever vaccine virus YF17D as a model of a well-coordinated response to viral infection. In SARS-CoV-2-infected outpatients circulating DCs were persistently reduced for several weeks whereas after YF17D vaccination DC numbers were decreased temporarily and rapidly replenished by increased proliferation until 14 days after vaccination. The majority of COVID-19 outpatients showed high expression of CD86 and PD-L1 in monocytes and DCs early on, resembling the dynamic after YF17D vaccination. In a subgroup of patients low CD86 and high PD-L1 expression were detected in monocytes and DCs coinciding with symptoms, higher age and lower lymphocyte counts. This phenotype was similar to that observed in severely ill COVID-19 patients, but less pronounced. Thus, prolonged reduction and dysregulated activation of blood DCs and monocytes were seen in a subgroup of symptomatic non-hospitalized COVID-19 patients while a transient coordinated activation was characteristic for the majority of patients with mild COVID-19 and the response to YF17D vaccination. This article is protected by copyright. All rights reserved.

2.
Infection ; 2022 Oct 04.
Article in English | MEDLINE | ID: covidwho-2235091

ABSTRACT

PURPOSE: Following the emergency use authorization of BNT162b2 by the Food and Drug administration (FDA) in early December 2020, mRNA- and vector-based vaccines became an important means of reducing the spread and mortality of the COVID-19 pandemic. The European Medicines Agency labelled immune thrombocytopenia (ITP) as a rare adverse reaction of unknown frequency after vector-, but not mRNA-vaccination. Here, we report on the long-term outcome of 6 patients who were diagnosed with de-novo, vaccine-associated ITP (VA-ITP), and on the outcome of subsequent SARS-CoV-2 re-vaccinations. METHODS: Patients were included after presenting to our emergency department. Therapy was applied according to ITP guidelines. Follow-up data were obtained from outpatient departments. Both mRNA- or vector-based vaccines were each used in 3 cases, respectively. RESULTS: In all patients, the onset of symptoms occurred after the 1st dose of vaccine was applied. 5 patients required treatment, 3 of them 2nd line therapy. All patients showed a complete response eventually. After up to 359 days of follow-up, 2 patients were still under 2nd line therapy with thrombopoietin receptor agonists. 5 patients have been re-vaccinated with up to 3 consecutive doses of SARS-CoV-2 vaccines, 4 of them showing stable platelet counts hereafter. CONCLUSION: Thrombocytopenia after COVID-19 vaccination should trigger a diagnostic workup to exclude vaccine-induced immune thrombotic thrombocytopenia (VITT) and, if confirmed, VA-ITP should be treated according to current ITP guidelines. Re-vaccination of patients seems feasible under close monitoring of blood counts and using a vaccine that differs from the one triggering the initial episode of VA-ITP.

3.
Nat Cancer ; 4(1): 81-95, 2023 01.
Article in English | MEDLINE | ID: covidwho-2186110

ABSTRACT

Individuals with hematologic malignancies are at increased risk for severe coronavirus disease 2019 (COVID-19), yet profound analyses of COVID-19 vaccine-induced immunity are scarce. Here we present an observational study with expanded methodological analysis of a longitudinal, primarily BNT162b2 mRNA-vaccinated cohort of 60 infection-naive individuals with B cell lymphomas and multiple myeloma. We show that many of these individuals, despite markedly lower anti-spike IgG titers, rapidly develop potent infection neutralization capacities against several severe acute respiratory syndrome coronavirus 2 variants of concern (VoCs). The observed increased neutralization capacity per anti-spike antibody unit was paralleled by an early step increase in antibody avidity between the second and third vaccination. All individuals with hematologic malignancies, including those depleted of B cells and individuals with multiple myeloma, exhibited a robust T cell response to peptides derived from the spike protein of VoCs Delta and Omicron (BA.1). Consistently, breakthrough infections were mainly of mild to moderate severity. We conclude that COVID-19 vaccination can induce broad antiviral immunity including ultrapotent neutralizing antibodies with high avidity in different hematologic malignancies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Lymphoma, B-Cell , Multiple Myeloma , Humans , COVID-19 Vaccines , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , T-Lymphocytes , Antibodies, Neutralizing , Vaccination
4.
PNAS Nexus ; 1(2)2022 May.
Article in English | MEDLINE | ID: covidwho-2107564

ABSTRACT

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1.

5.
Nutrients ; 14(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071661

ABSTRACT

Overweight and obesity are associated with chronic low-grade inflammation and represent risk factors for various diseases, including COVID-19. However, most published studies on COVID-19 defined obesity by the body mass index (BMI), which does not encounter adipose tissue distribution, thus neglecting immunometabolic high-risk patterns. Therefore, we comprehensively analyzed baseline anthropometry (BMI, waist-to-height-ratio (WtHR), visceral (VAT), epicardial (EAT), subcutaneous (SAT) adipose tissue masses and liver fat, inflammation markers (CRP, ferritin, interleukin-6), and immunonutritional scores (CRP-to-albumin ratio (CAR), modified Glasgow prognostic score, neutrophile-to-lymphocyte ratio, prognostic nutritional index)) in 58 consecutive COVID-19 patients of the early pandemic phase with regard to the necessity of invasive mechanical ventilation (IMV). Here, metabolically high-risk adipose tissues represented by increased VAT, liver fat, and WtHR strongly correlated with higher levels of inflammation, pathologic immunonutritional scores, and the need for IMV. In contrast, the prognostic value of BMI was inferior and absent with regard to SAT. Multivariable logistic regression analysis identified an optimized IMV risk prediction model employing liver fat, WtHR, and CAR. In summary, we suggest an immunometabolically risk-adjusted model to predict COVID-19-induced respiratory failure better than BMI-based stratification, which warrants prospective validation.


Subject(s)
COVID-19 , Respiratory Insufficiency , Humans , Body Mass Index , Interleukin-6 , Obesity/complications , Obesity/pathology , Inflammation/complications , Respiratory Insufficiency/complications , Albumins , Ferritins , Risk Assessment , Intra-Abdominal Fat/pathology , Risk Factors
6.
Dtsch Med Wochenschr ; 147(20): 1297-1298, 2022 10.
Article in German | MEDLINE | ID: covidwho-2050604

Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2
7.
Nat Commun ; 13(1): 5586, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2042319

ABSTRACT

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Subject(s)
COVID-19 , Lymphoma , Vaccines , CD8-Positive T-Lymphocytes , COVID-19/therapy , Epitopes, T-Lymphocyte/genetics , Humans , Immunization, Passive , Mutation , Nucleoproteins/genetics , Peptides/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
8.
Med Oncol ; 39(6): 104, 2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1782949

ABSTRACT

Limited knowledge exists on the effectiveness of preventive preparedness plans for the care of outpatient cancer patients during epidemics or pandemics. To ensure adequate, timely and continuous clinical care for this highly vulnerable population, we propose the establishment of preventive standard safety protocols providing effective early phase identification of outbreaks at outpatient cancer facilities and communicating adapted standards of care. The prospective cohort study Protect-CoV conducted at the LMU Klinikum from mid-March to June 2020 investigated the effectiveness of a rapid, proactive and methodical response to protect patients and interrupt SARS-CoV-2 transmission chains during the first pandemic wave. The implemented measures reduced the risk of infection of individual cancer patients and ensured safe adjunctive infusion therapy in an outpatient setting during the early COVID-19 pandemic. In addition to the immediate implementation of standard hygiene procedures, our results underscore the importance of routine PCR testing for the identification of asymptomatic or pre-symptomatic COVID-19 cases and immediate tracing of positive cases and their contacts. While more prospective controlled studies are needed to confirm these results, our study illustrates the importance of including preventative testing and tracing measures in the standard risk reduction procedures at all out patient cancer centers.


Subject(s)
COVID-19 , Pandemics , Ambulatory Care Facilities , Cohort Studies , Humans , Pandemics/prevention & control , Prospective Studies , Risk Reduction Behavior , SARS-CoV-2
9.
Nat Commun ; 13(1): 1018, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702467

ABSTRACT

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


Subject(s)
COVID-19/immunology , Adult , Aged , Aged, 80 and over , Ambulatory Care , Cytokines/blood , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Interferons/immunology , Killer Cells, Natural/immunology , Longitudinal Studies , Male , Middle Aged , Monocytes/immunology , Nasopharynx/immunology , Nasopharynx/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunology
10.
Cell Rep ; 37(13): 110169, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1616407

ABSTRACT

The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is the subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against ß-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.


Subject(s)
COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Antibodies/immunology , Antibodies, Viral/immunology , COVID-19/etiology , Coronavirus Infections/immunology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Cross Reactions/immunology , Female , Germany , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/pathogenicity , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
11.
Cell reports ; 2021.
Article in English | EuropePMC | ID: covidwho-1565013

ABSTRACT

Wratil et al. find specific antibody responses against seasonal human coronaviruses, which cause the common cold, to be elevated in patients with COVID-19 compared to pre-pandemic blood donors. This specific immunity is likely pre-existing in patients and increases their susceptibility to SARS-CoV-2 and severity of COVID-19.

12.
Euro Surveill ; 26(43)2021 10.
Article in English | MEDLINE | ID: covidwho-1547185

ABSTRACT

BackgroundIn the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data.AimWe applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata.MethodsWe investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission.ResultsWe identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions.ConclusionsEarly spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Genome, Viral , Genomics , Germany/epidemiology , Hospitals , Humans , Phylogeny , SARS-CoV-2
13.
Dtsch Med Wochenschr ; 146(13-14): 908-910, 2021 Jul.
Article in German | MEDLINE | ID: covidwho-1493269

ABSTRACT

COVID-19 continues to challenge health-care systems and ICUs around the globe more than one year into the pandemic and in spite of all advances in diagnosis and treatment of the disease caused by the novel SARS-CoV-2. Many open questions remain concerning optimal medical therapy, respiratory management and resource allocation, particuly in times of limited available health care personell. In the following short article, we summarized current knowlegde on management of COVID-19 in the ICU.


Subject(s)
COVID-19/therapy , Critical Care , Intensive Care Units , Humans , Intensive Care Units/standards , Intensive Care Units/trends
14.
Dtsch Med Wochenschr ; 146(13-14): 899-903, 2021 Jul.
Article in German | MEDLINE | ID: covidwho-1493267

ABSTRACT

Infection with SARS-CoV-2 has a profound influence on the hematopoetic system that mediates clinical symptoms and mortality. Several studies have shown that treatment of the cytokine storm (CRS) with anti-inflammatory drugs like dexamethasone and tocilizumab can significantly improve survival. Systematic reviews confirm the safety of convalescent plasma administration and offer initial indications of its effectiveness in certain groups. COVID-associated coagulopathy (CAC) and vaccine-induced immune thrombotic thrombocytopenia (VITT) represent severe infection- or vaccination associated complications that require a specific diagnostic and therapeutic workup.


Subject(s)
COVID-19/blood , COVID-19/complications , Hematology , Hematopoiesis , Hemostasis , SARS-CoV-2/physiology , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/prevention & control , Blood Coagulation Disorders/therapy , COVID-19/mortality , COVID-19/therapy , Humans , Immunization, Passive , COVID-19 Serotherapy
15.
Infection ; 50(3): 635-642, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1491465

ABSTRACT

PURPOSE: To investigate the expression of the receptor protein ACE-2 alongside the urinary tract, urinary shedding and urinary stability of SARS-CoV-2 RNA. METHODS: Immunohistochemical staining was performed on tissue from urological surgery of 10 patients. Further, patients treated for coronavirus disease (COVID-19) at specialized care-units of a university hospital were assessed for detection of SARS-CoV-2 RNA in urinary samples via PCR, disease severity (WHO score), inflammatory response of patients. Finally, the stability of SARS-CoV-2 RNA in urine was analyzed. RESULTS: High ACE-2 expression (3/3) was observed in the tubules of the kidney and prostate glands, moderate expression in urothelial cells of the bladder (0-2/3) and no expression in kidney glomeruli, muscularis of the bladder and stroma of the prostate (0/3). SARS-CoV-2 RNA was detected in 5/199 urine samples from 64 patients. Viral RNA was detected in the first urinary sample of sequential samples. Viral RNA load from other specimen as nasopharyngeal swabs (NPS) or endotracheal aspirates revealed higher levels than from urine. Detection of SARS-CoV-2 RNA in urine was not associated with impaired WHO score (median 5, range 3-8 vs median 4, range 1-8, p = 0.314), peak white blood cell count (median 24.1 × 1000/ml, range 5.19-48.1 versus median 11.9 × 1000/ml, range 2.9-60.3, p = 0.307), peak CRP (median 20.7 mg/dl, 4.2-40.2 versus median 11.9 mg/dl, range 0.1-51.9, p = 0.316) or peak IL-6 levels (median: 1442 ng/ml, range 26.7-3918 versus median 140 ng/ml, range 3.0-11,041, p = 0.099). SARS-CoV-2 RNA was stable under different storage conditions and after freeze-thaw cycles. CONCLUSIONS: SARS-CoV-2 RNA in the urine of COVID-19 patients occurs infrequently. The viral RNA load and dynamics of SARS-CoV-2 RNA shedding suggest no relevant route of transmission through the urinary tract.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Urinary Tract , COVID-19/diagnosis , Humans , Male , RNA, Viral , SARS-CoV-2/genetics , Urinary Tract/chemistry , Virus Shedding
16.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Article in English | MEDLINE | ID: covidwho-1456098

ABSTRACT

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Regeneration/immunology , SARS-CoV-2/immunology , Adult , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , COVID-19/pathology , Dendritic Cells/pathology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Programmed Cell Death 1 Receptor/immunology
17.
Lancet Respir Med ; 9(8): 863-872, 2021 08.
Article in English | MEDLINE | ID: covidwho-1340915

ABSTRACT

BACKGROUND: SARS-CoV-2 entry in human cells depends on angiotensin-converting enzyme 2, which can be upregulated by inhibitors of the renin-angiotensin system (RAS). We aimed to test our hypothesis that discontinuation of chronic treatment with ACE-inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) mitigates the course o\f recent-onset COVID-19. METHODS: ACEI-COVID was a parallel group, randomised, controlled, open-label trial done at 35 centres in Austria and Germany. Patients aged 18 years and older were enrolled if they presented with recent symptomatic SARS-CoV-2 infection and were chronically treated with ACEIs or ARBs. Patients were randomly assigned 1:1 to discontinuation or continuation of RAS inhibition for 30 days. Primary outcome was the maximum sequential organ failure assessment (SOFA) score within 30 days, where death was scored with the maximum achievable SOFA score. Secondary endpoints were area under the death-adjusted SOFA score (AUCSOFA), mean SOFA score, admission to the intensive care unit, mechanical ventilation, and death. Analyses were done on a modified intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT04353596. FINDINGS: Between April 20, 2020, and Jan 20, 2021, 204 patients (median age 75 years [IQR 66-80], 37% females) were randomly assigned to discontinue (n=104) or continue (n=100) RAS inhibition. Within 30 days, eight (8%) of 104 died in the discontinuation group and 12 (12%) of 100 patients died in the continuation group (p=0·42). There was no significant difference in the primary endpoint between the discontinuation and continuation group (median [IQR] maximum SOFA score 0·00 (0·00-2·00) vs 1·00 (0·00-3·00); p=0·12). Discontinuation was associated with a significantly lower AUCSOFA (0·00 [0·00-9·25] vs 3·50 [0·00-23·50]; p=0·040), mean SOFA score (0·00 [0·00-0·31] vs 0·12 [0·00-0·78]; p=0·040), and 30-day SOFA score (0·00 [10-90th percentile, 0·00-1·20] vs 0·00 [0·00-24·00]; p=0·023). At 30 days, 11 (11%) in the discontinuation group and 23 (23%) in the continuation group had signs of organ dysfunction (SOFA score ≥1) or were dead (p=0·017). There were no significant differences for mechanical ventilation (10 (10%) vs 8 (8%), p=0·87) and admission to intensive care unit (20 [19%] vs 18 [18%], p=0·96) between the discontinuation and continuation group. INTERPRETATION: Discontinuation of RAS-inhibition in COVID-19 had no significant effect on the maximum severity of COVID-19 but may lead to a faster and better recovery. The decision to continue or discontinue should be made on an individual basis, considering the risk profile, the indication for RAS inhibition, and the availability of alternative therapies and outpatient monitoring options. FUNDING: Austrian Science Fund and German Center for Cardiovascular Research.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 , Hypertension , Renin-Angiotensin System , SARS-CoV-2 , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Area Under Curve , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , Female , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Male , Middle Aged , Organ Dysfunction Scores , Outcome and Process Assessment, Health Care , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Adjustment/methods , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Severity of Illness Index , Withholding Treatment/statistics & numerical data
19.
Hemasphere ; 5(7): e603, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1301392

ABSTRACT

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

SELECTION OF CITATIONS
SEARCH DETAIL